Two small regulatory RNAs establish opposing fates of a developmental axis.

نویسندگان

  • Fabio T S Nogueira
  • Shahinez Madi
  • Daniel H Chitwood
  • Michelle T Juarez
  • Marja C P Timmermans
چکیده

Small RNAs are important regulators of gene expression. In maize, adaxial/abaxial (dorsoventral) leaf polarity is established by an abaxial gradient of microRNA166 (miR166), which spatially restricts the expression domain of class III homeodomain leucine zipper (HD-ZIPIII) transcription factors that specify adaxial/upper fate. Here, we show that leafbladeless1 encodes a key component in the trans-acting small interfering RNA (ta-siRNA) biogenesis pathway that acts on the adaxial side of developing leaves and demarcates the domains of hd-zipIII and miR166 accumulation. Our findings indicate that tasiR-ARF, a ta-siRNA, and miR166 establish opposing domains along the adaxial-abaxial axis, thus revealing a novel mechanism of pattern formation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Animal-vegetal axis patterning mechanisms in the early sea urchin embryo.

We discuss recent progress in understanding how cell fates are specified along the animal-vegetal axis of the sea urchin embryo. This process is initiated by cell-autonomous, maternally directed, mechanisms that establish three unique gene-regulatory domains. These domains are defined by distinct sets of vegetalizing (beta-catenin) and animalizing transcription factor (ATF) activities and their...

متن کامل

Control of developmental timing by micrornas and their targets.

In Caenorhabditis elegans the timing of many developmental events is regulated by heterochronic genes. Such genes orchestrate the timing of cell divisions and fates appropriate for the developmental stage of an organism. Analyses of heterochronic mutations in the nematode C. elegans have revealed a genetic pathway that controls the timing of post-embryonic cell divisions and fates. Two of the g...

متن کامل

Determination of EGFR Signaling Output by Opposing Gradients of BMP and JAK/STAT Activity

A relatively small number of signaling pathways drive a wide range of developmental decisions, but how this versatility in signaling outcome is generated is not clear. In the Drosophila follicular epithelium, localized epidermal growth factor receptor (EGFR) activation induces distinct cell fates depending on its location. Posterior follicle cells respond to EGFR activity by expressing the T-bo...

متن کامل

RNA localization in development.

Cytoplasmic RNA localization is an evolutionarily ancient mechanism for producing cellular asymmetries. This review considers RNA localization in the context of animal development. Both mRNAs and non-protein-coding RNAs are localized in Drosophila, Xenopus, ascidian, zebrafish, and echinoderm oocytes and embryos, as well as in a variety of developing and differentiated polarized cells from yeas...

متن کامل

Regulation of dorsal-ventral patterning: the ventralizing effects of the novel Xenopus homeobox gene Vox.

The formation of the dorsal-ventral axis in Xenopus laevis is elicited by a signaling cascade on the dorsal side of the embryo initiated by cortical rotation. These early developmental events impart an initial axial polarity to the embryo. By the time gastrulation occurs, the embryo has established opposing dorsal and ventral regulatory regions. Through a dynamic process, the embryo acquires a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genes & development

دوره 21 7  شماره 

صفحات  -

تاریخ انتشار 2007